Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Multicellularity was accompanied by the emergence of new classes of cell surface and secreted proteins. The nematodeC. elegansis a favorable model to study cell surface interactomes, given its well-defined and stereotyped cell types and intercellular contacts. Here we report ourC. elegansextracellular interactome dataset, the largest yet for an invertebrate. Most of these interactions were unknown, despite recent datasets for flies and humans, as our collection contains a larger selection of protein families. We uncover new interactions for all four major axon guidance pathways, including ectodomain interactions between three of the pathways. We demonstrate that a protein family known to maintain axon locations are secreted receptors for insulins. We reveal novel interactions of cystine-knot proteins with putative signaling receptors, which may extend the study of neurotrophins and growth-factor-mediated functions to nematodes. Finally, our dataset provides insights into human disease mechanisms and how extracellular interactions may help establish connectomes.more » « less
-
This paper presents a distributed current source (DCS) method for modeling the dynamic responses of eddy current density (ECD) induced in electrical conductors and its corresponding magnetic flux density (MFD); both nonmagnetic and weakly magnetized conductors are considered. Unlike conventional numerical methods such as finite element analysis (FEA), the DCS method, which accounts for the eddy-current and magnetization effects by means of equivalent volume and surface current-sources, derives closed-form solutions to the ECD and MFD fields in state-space representation. The model has been experimentally validated and verified by comparing results from FEA simulations with both harmonic and nonharmonic excitations. To gain physical insights to the measured MFD for simultaneous estimating the material/geometrical properties of a conductor, the static and dynamic responses to rectangular pulsed current excitations have been numerically investigated, confirming the feasibility and effectiveness of the measurement methods.more » « less
-
This paper presents a new modeling method to determine the harmonic eddy-current (EC) field induced in a non-ferrous metal and its corresponding magnetic flux density (MFD) by an EC-based sensing system for geometrical measurements, which accounts for the boundary effects of the object. Modeled using a distributed current source (DCS) method in state-space representation, the EC field is formulated as a two-step constrained least-square (CLS) problem to solve for its real and imaginary parts. Two practical techniques to improve the efficiency and accuracy of the EC solutions are illustrated; the first refines the DCS distribution based on the skin-depth effects, and the second takes advantages of commercial mesh-generation software to facilitate the modeling of EC induced in complex shaped objects. The DCS-based EC models are verified numerically by comparing computed results with 2D analytical axisymmetric solutions and commercial finite-element analysis (FEA), and evaluated experimentally with an EC sensor that measures the MFD generated by the induced EC in different materials and geometrical configurations.more » « less
An official website of the United States government
